Extensions 1→N→G→Q→1 with N=C23.D13 and Q=C2

Direct product G=N×Q with N=C23.D13 and Q=C2
dρLabelID
C2×C23.D13208C2xC2^3.D13416,173

Semidirect products G=N:Q with N=C23.D13 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.D131C2 = C22.2D52φ: C2/C1C2 ⊆ Out C23.D131044C2^3.D13:1C2416,13
C23.D132C2 = C23⋊Dic13φ: C2/C1C2 ⊆ Out C23.D131044C2^3.D13:2C2416,41
C23.D133C2 = C22⋊C4×D13φ: C2/C1C2 ⊆ Out C23.D13104C2^3.D13:3C2416,101
C23.D134C2 = D26.12D4φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:4C2416,104
C23.D135C2 = C23.6D26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:5C2416,106
C23.D136C2 = C23.23D26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:6C2416,150
C23.D137C2 = D4×Dic13φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:7C2416,155
C23.D138C2 = C23.18D26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:8C2416,156
C23.D139C2 = C52.17D4φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:9C2416,157
C23.D1310C2 = C23⋊D26φ: C2/C1C2 ⊆ Out C23.D13104C2^3.D13:10C2416,158
C23.D1311C2 = C522D4φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:11C2416,159
C23.D1312C2 = Dic13⋊D4φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13:12C2416,160
C23.D1313C2 = C24⋊D13φ: C2/C1C2 ⊆ Out C23.D13104C2^3.D13:13C2416,174
C23.D1314C2 = C4×C13⋊D4φ: trivial image208C2^3.D13:14C2416,149

Non-split extensions G=N.Q with N=C23.D13 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.D13.1C2 = C23.11D26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13.1C2416,98
C23.D13.2C2 = C22⋊Dic26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13.2C2416,99
C23.D13.3C2 = C23.D26φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13.3C2416,100
C23.D13.4C2 = C52.48D4φ: C2/C1C2 ⊆ Out C23.D13208C2^3.D13.4C2416,145
C23.D13.5C2 = C23.21D26φ: trivial image208C2^3.D13.5C2416,147

׿
×
𝔽